Какой элемент не может быть окислителем. Что такое окислитель и как его используют. Окислитель Информацию О

По их функции в окислительно-восстановительных процессах их участники делятся на окислителей и восстановителей.

Окислители – это атомы, молекулы или ионы, принимающие электроны от других атомов. Степень окисления окислителя уменьшается.

Восстановители – атомы, молекулы или ионы, отдающие электроны другим атомам. Степень окисления восстановителя повышается. При протекании ОВР окислитель восстанавливается, восстановитель – окисляется, причем оба процесса протекают одновременно.

Соответственно, окислители и восстановители взаимодействуют в таких соотношениях, чтобы числа принятых и отданных электронов были одинаковы.

Конкретное проявление окислительных или восстановительных свойств атомами различных элементов зависит от многих факторов. К важнейшим из них следует отнести положение элемента в таблице Менделеева, степень окисления элемента в данном веществе, особые свойства других участников реакции (характер среды для растворов, концентрация реагентов, температура, стереохимические свойства сложных частиц и др.)

Окислители.

Окислителями могут быть как простые, так и сложные вещества. Попытаемся определить, какие факторы определяют окислительные (и восстановительные) свойства веществ.

Об окислительной способности простых веществ можно судить по значениям относительной электроотрицательности (χ ). Это понятие отражает способность атома смещать к себе электронную плотность от других атомов, т.е. фактически является мерой окислительной способности простых веществ. Действительно, наиболее сильные окислительные свойства проявляют активные неметаллы с максимальными значениями электроотрицательности. Так,фтор F 2 проявляет только свойства окислителя , поскольку имеет самое большое значениеχ , равное 4,1 (по шкале Оллреда-Рохова). Второе место занимает кислород О 2 , для негоχ = 3,5, еще более сильные окислительные свойства проявляет озон О 3 . Третье место занимает азот (χ =3,07), но его окислительные свойства проявляются только при высоких температурах, поскольку молекула азотаN 2 обладает очень высокой прочностью, т.к. атомы связаны тройной связью. Достаточно сильные окислительные свойства имеют хлор и бром.

С другой стороны, минимальные значения электроотрицательности присущи металлам (χ = 0,8-1,6). Это означает, что собственные электроны атомов металлов удерживаются очень слабо и легко могут переходить к атомам с большей электроотрицательностью. Атомы металлов в нулевой степени могут проявлятьтолько восстановительные свойства и не могут принимать электроны. Наиболее выраженные восстановительные свойства проявляют металлыIА иIIА групп.

Окислительно-восстановительные свойства сложныхвеществ

Критерием окислительной способности атомов может служить степень окисления. Максимальная степень окисления соответствует переходу всех валентных электронов к другим атомам. Такой атом больше не может отдавать электроны, а может только принимать их. Таким образом, в максимальной степени окисления элемент может проявлять только окислительные свойств а. Тем не менее, необходимо отметить, что максимальная степень окисления не означает автоматическое проявление ярко выраженных окислительных свойств. Чтобы реализовались свойства сильного окислителя, частица должна быть неустойчивой, максимально несимметричной, с неравномерным распределением электронной плотности. Так, в разбавленных растворах сульфат-ионSO 4 2- , содержащий атом серы в максимальной степени окисления+6 , вообще не проявляет окислительных свойств, так как имеет высокосимметричное тетраэдрическое строение. Тогда как в концентрированных растворах серной кислоты заметная доля частиц находится в виде недиссоциированных молекул и ионовHSO 4 - , имеющих несимметричное строение с неравномерным распределением электронной плотности. Как следствие этого, концентрированная серная кислота, особенно при нагревании, очень сильный окислитель.

С другой стороны, минимальная степень окисления элемента означает, что атом неметалла принял максимально возможное число электронов на валентные подуровни и больше не может принимать электроны. Следовательно,

атомы неметаллов в минимальной степени окисления могут проявлять только восстановительные свойства .

Можно напомнить, что минимальная степень окисления неметалла равна номеру группы –8 . Как и в случае с серной кислотой, для реализации восстановительных свойств недостаточно иметь только минимальную степень окисления. В качестве примера можно привести азот в степени окисления –3. Высокосимметричный ион аммонияNH 4 + в растворе крайне слабый восстановитель. Молекула аммиака, обладающая меньшей симметричностью, проявляет достаточно сильные восстановительные свойства при нагревании. Можно привести реакцию восстановления из оксидов:

3FeO+ 2NH 3 = 3Fe+3H 2 O+N 2 .

Что же касается простых веществ с промежуточными значениями электроотрицательности (χ = 1,9 – 2,6), то для неметаллов можно ожидать реализации и окислительных, и восстановительных свойств. К таким веществам относятся водородH 2 , углеродC, фосфорP, сераS, иодI 2 и другие неметаллы средней активности. Естественно,металлы из этой категории простых веществ исключаются, так какне могут принимать электроны .

Эти вещества при взаимодействии с активными окислителями проявляют свойства восстановителей, а при реакциях с восстановителями проявляют свойства окислителей. В качестве примера приведем реакции серы:

0 0 +4 -2 0 0 +2 -2

S+O 2 =SO 2 Fe+S=FeS

как видно, в первой реакции сера-восстановитель, а во второй-окислитель.

Сложные вещества, содержащие атомы в промежуточных степенях окисления, также будут проявлять свойства и окислителей и восстановителей. Таких веществ очень много, поэтому назовем лишь наиболее часто встречающиеся. Это соединения серы (+4): в кислой среде SO 2 , а в щелочной и нейтральнойSO 3 2- иHSO 3 - . Если эти соединения участвуют в реакции в качестве восстановителей, то они будут окисляться до серы +6 (в газовой фазе доSO 3 , а в растворе доSO 4 2- . Если же соединения серы (+4) реагируют с активными восстановителями, то происходит восстановление до элементарной серы, или даже до сероводорода.

SO 2 + 4HI=S+ 2I 2 +2H 2 O

Многие соединения азота также проявляют окислительно-восстановительную двойственность. Представляет определенный интерес поведение нитрит-ионов NO 2 - . При их окислении образуется нитрат-ионNO 3 - , а при восстановлении газообразный монооксид азотаNO. Пример: 2NaNO 2 + 2NaI+2H 2 SO 4 =I 2 +NO+ 2Na 2 SO 4 +2H 2 O.

Рассмотрим еще один пример, на этот раз возьмем пероксид водорода, в котором степень окисления кислорода (-1). Если имеет место окисление этого вещества, то степень кислорода повысится до 0, и будет наблюдаться выделение газообразного водорода:

H 2 O 2 +Cl 2 = 2HCl+O 2 .

В реакциях окисления степень окисления кислорода в пероксидах понижается до (-2), что соответствует или воде H 2 O, или гидроксид –ионуOH - . В качестве примера приведем реакцию, часто используемую в реставрационных работах, при которых черный сульфид свинца при действии разбавленного раствора пероксида водорода превращается в белый сульфат:PbS (черный) +4H 2 O 2 =PbSO 4 (белый) +4H 2 O.

Таким образом, завершая вводную часть, приведем основные окислители, восстановители и вещества, могущие проявлять и окислительные и восстановительные свойства.

Окислители :F 2 ,O 2 ,O 3 ,Cl 2 ,Br 2 ,HNO 3 ,H 2 SO 4 (конц.),KMnO 4 ,K 2 Cr 2 O 7 ,PbO 2 ,NаBiO 3 , ионы в водном раствореFe 3+ ,Cu 2+ ,Ag + .

Восстановители :H 2 S,(S 2-),HI(I -),HBr(Br -),HCl(слабый),NH 3 (при высоких температурах), ионы в водном раствореFe 2+ ,Cr 2+ ,Sn 2+ и др.

Вещества с двойственными свойствами :H 2 ,C,P,As,S,I 2 ,CO,H 2 O 2 ,Na 2 O 2 ,NaNO 2 ,SO 2 (SO 3 2-) и, формально, практически все вещества, содержащие атомы с промежуточной степенью окисления.

Составление уравнений окислительно-восстановительных реакций .

Существует несколько способов составления уравнений ОВР. Обычно применяются

а) метод электронного баланса,

б) метод электронно-ионного баланса.

В основе обоих методов лежит нахождение таких количественных отношений между окислителем и восстановителем, при которых соблюдается равенство принятых и отданных электронов.

Метод электронного баланса является более универсальным, хотя и менее наглядным. Он основан на подсчете изменения степеней окисления атомов окислителя и восстановителя в исходных и конечных веществах. При работе с этим методом удобно следовать такому алгоритму.

    Записывается молекулярная схема окислительно-восстановительной реакции,

    Рассчитываются степени окисления атомов (обычно тех, которые ее меняют),

    Определяются окислитель и восстановитель,

    Устанавливаются числа электронов, принимаемых окислителем, и число электронов, отдаваемых восстановителем,

    Находятся коэффициенты, при домножении на которые числа отданных и принятых электронов уравниваются,

    Подбираются коэффициенты для других участников реакции.

Рассмотрим реакцию окисления сероводорода.

H 2 S+O 2 =SO 2 +H 2 O

В этой реакции сера (-2) является восстановителем, а молекулярный кислород - окислителем. Затем составляем электронный баланс.

S -2 -6e - →S +4 2 - коэффициент домножения для восстановителя

O 2 +4e - →2O -2 3 - коэффициент домножения для окислителя

Записываем формулы веществ с учетом коэффициентов домножения

2H 2 S+ 3O 2 = 2SO 2 +2H 2 O

Рассмотрим еще один случай – разложение нитрата алюминия Al(NO 3) 3 . В этом веществе атомы азота имеют высшую степень окисления (+5), а атомы кислорода – низшую (-2). Отсюда следует, что азот будет окислителем, а кислород – восстановителем. Составляем электронный баланс, зная, что весь азот восстанавливается до диоксида азота, а кислород окисляется до молекулярного кислорода. С учетом чисел атомов запишем:

3N +5 +3e - → 3N +4 4

2O -2 -4e - →O 2 o 3

тогда уравнение разложения запишется так: 4Al(NO 3) 3 =Al 2 O 3 + 12NO 2 + 3O 2 .

Метод электронного баланса обычно используют для определения коэффициентов в ОВР, протекающих в гетерогенных системах, содержащих твердые вещества или газы.

Для реакций, протекающих в растворах, обычно применяется метод электронно-ионного баланса , который учитывает влияние различных факторов на состав конечных продуктов.

Данный метод учитывает: а) кислотность среды, б)концентрации реагирующих веществ, в) реальное состояние реагирующих частиц в растворе, г) влияние температуры и др. Кроме того, для данного метода нет необходимости использовать степень окисления.

Прежде чем определять самые сильные окислители, постараемся выяснить теоретические вопросы, касающиеся данной темы.

Определение

В химии под окислителем подразумевают нейтральные атомы либо заряженные частицы, которые в взаимодействия принимают от других частиц электроны.

Примеры окислителей

Для того чтобы определить самые сильные окислители, необходимо отметить, что данный показатель зависит от степени окисления. Например, в перманганате калия у марганца она составляет +7, то есть является максимальной.

Данное соединение, более известное как марганцовка, проявляет типичные окислительные свойства. Именно можно использовать в органической химии для проведения качественных реакций на кратную связь.

Определяя самые сильные окислители, остановимся на азотной кислоте. Ее по праву называют царицей кислот, ведь именно это соединение даже в разбавленном виде способно вступать во взаимодействие с металлами, расположенными в электрохимическом ряду напряжений металлов после водорода.

Рассматривая самые сильные окислители, нельзя оставить без внимания соединения хрома. Соли хрома считаются одними из самых ярких окислителей, их используют в качественном анализе.

Группы окислителей

В качестве окислителей можно рассматривать и нейтральные молекулы, и заряженные частицы (ионы). Если анализировать атомы химических элементов, проявляющие подобные свойства, то необходимо, чтобы на у них содержалось от четырех до семи электронов.

Подразумевается, что именно p-элементы проявляют яркие окислительные характеристики, а к ним относятся типичные неметаллы.

Самым сильным окислителем является фтор, представитель подгруппы галогенов.

Среди слабых окислителей можно рассмотреть представителей четвертой группы таблицы Менделеева. Наблюдается закономерное уменьшение окислительных свойств в главных подгруппах при возрастании радиуса атома.

Учитывая подобную закономерность, можно отметить, что минимальные окислительные свойства проявляет свинец.

Самый сильный неметалл-окислитель - который не способен отдавать электроны другим атомам.

Такие элементы, как хром, марганец, в зависимости от среды, в которой протекает химическое взаимодействие, могут проявлять не только окислительные, но и восстановительные свойства.

Они могут менять свою степень окисления с меньшей величины на большую, отдавая для этого электроны другим атомам (ионам).

Ионы всех благородных металлов даже в минимальной степени окисления проявляют яркие окислительные свойства, активно вступая в химическое взаимодействие.

Говоря о сильных окислителях, неправильно будет оставить без внимания молекулярный кислород. Именно эта двухатомная молекула считается одним из самых доступных и распространенных видов окислителей, поэтому достаточно широко применяется в органическом синтезе. Например, при наличии окислителя в виде молекулярного кислорода можно превратить этанол в этаналь, что необходимо для последующего синтеза уксусной кислоты. С помощью окисления можно получить из природного газа даже органический спирт (метанол).

Заключение

Окислительно-восстановительные процессы имеют важное значение не только для проведения каких-то превращений в химической лаборатории, но и для промышленных производств различных органических и неорганических продуктов. Именно поэтому так важно правильно подбирать окислители, чтобы повысить эффективность протекания реакции, увеличить выход продукта взаимодействия.

Окислительно-восстановительные реакции - это реакции, которые идут с изменением степеней окисления элементов. Степень окисления - это условный заряд атома в молекуле, где все полярные связи считаются ионными.

Восстановление - это процесс присоединения электронов.

Окислитель - это атом, молекула или ион, который принимает электроны и понижает свою степень окисления, т.е. восстанавливается.

Восстановитель - это атом, молекула или ион, который отдаёт электроны и повышает свою степень окисления, т.е. окисляется.

Восстановители: а) металлы - чем меньше потенциал ионизации, тем сильнее восстановительные свойства; б) соединения элементов в низших степенях окисления (NH 3 , H 2 S, HBr, HI и др.), у которых все орбитали заполнены и могут только отдавать электроны.

Окислители: а) неметаллы (F 2 , Cl 2 , Br 2 , O 2 и др.) - чем больше сродство к электрону, тем сильнее окислительные свойства; б) ионы металлов в высоких степенях окисления (Fe 3+ , Sn 4+ , Mn 4+ и др.); в) соединения элементов в высших степенях окисления (KMnO 4 , K 2 Cr 2 O 7 , NaBiO 3 , HNO 3 , H 2 SO 4 (конц.) и др.), у которых уже отданы все валентные электроны и могут быть только окислителями.

Соединения элементов в промежуточных степенях окисления (HNO 2 , H 2 SO 3 , H 2 O 2 и др.) могут проявлять окислительные и восстановительные свойства в зависимости от окислительно-восстановительных свойств второго реагента .

H 2 SO 3 + 2H 2 S = 3S + 3H 2 O

окисл. восст.

H 2 SO 3 + Br 2 + H 2 O = H 2 SO 4 + 2HBr

восст. окисл.

Окислители, принимая электроны, то есть, восстанавливаясь, переходят в восстановленную форму:

F 2 + 2e ® 2F -

окисл. восст.

Восстановители, отдавая электроны, то есть, окисляясь, переходят в окисленную форму:

Na 0 - 1e ® Na +

восст. окисл.

Таким образом, как окислители, так и восстановители существуют в окисленной (с более высокой степенью окисления элемента) и восстановленной (с более низкой степенью окисления элемента) формах. При этом для окислителей более характерен переход из окисленной в восстановленную форму, а для восстановителей характерен переход из восстановленной в окисленную форму. Обратные процессы не характерны, и мы не считаем, например, что F - является восстановителем, а Na + - окислителем.

Равновесие между окисленной и восстановленной формами характеризуется с помощью окислительно-восстановительного потенциала, который зависит от концентраций окисленной и восстановленной форм, реакции среды, температуры и т.д.


E = E o +

где - молярная концентрация окисленной формы;

[Восст.] - молярная концентрация восстановленной формы;

n - число электронов, участвующих в полуреакции;

Е 0 - стандартное значение окислительно-восстановительного потенциала; Е = Е 0 , если [Восст.] = [Ок] = 1 моль/л;

Величины стандартных электродных потенциалов Е 0 приведены в таблицах и характеризуют окислительные и восстановительные свойства соединений: Чем положительнее величина Е 0 , тем сильнее окислительные свойства, и чем отрицательнее значение Е 0 , тем сильнее восстановительные свойства.

Например:

F 2 + 2e ® 2F - Е 0 = 2,87 в - сильный окислитель

Na + + 1e ® Na 0 Е 0 = -2,71 в - сильный восстановитель

(процесс всегда записывается для реакций восстановления).

Поскольку окислительно-восстановительная реакция представляет собой совокупность двух полуреакций, окисления и восстановления, то она характеризуется значением разности стандартных электродных потенциалов окислителя (Е 0 ок) и восстановителя (Е 0 восст) - электродвижущей силой (э.д.с.) DЕ 0:

DЕ 0 = Е 0 ок - Е 0 восст,

Э.д.с. реакции DЕ 0 связана с изменением свободной энергии Гиббса DG: DG = -nFDЕ 0 , а с другой стороны, DG связана с константой равновесия К реакции уравнением DG = -2,3RTlnK.

Из последних двух уравнений следует зависимость между э.д.с. и константой равновесия реакции:

DЕ = (2,3RT/nF)lnK.

Э.д.с. реакции при концентрациях отличных от стандартных (т.е. не равных 1 моль/л) DЕ равна:

DЕ = DЕ 0 - (2,3RT/nF)lgK или DЕ= DЕ 0 - (0,059/n)lgK.

В случае равновесия DG = 0 и следовательно DЕ = 0. Откуда DЕ = (0,059/n)lgK и К = 10 n D Е /0,059 .

Для самопроизвольного протекания реакции должно выполняться требование: DG >1, которым соответствует условие DЕ 0 > 0. Поэтому для определения возможности протекания данной окислительно-восстановительной реакции необходимо вычислить значение DЕ 0 . Если DЕ 0 > 0, реакция идет. Если DЕ 0 < 0, реакция не идет.

Пример 1. Определить возможность протекания реакции

2FeCl 3 + 2KI ® 2FeCl 2 + 2KCl + I 2

Решение: Находим, что окислителем является ион Fe +3 , восстанавливающийся до Fe +2 , а восстановителем - I - , окисляющийся до I 2 . Находим по таблице значения стандартных электродных потенциалов: E 0 (Fe +3 /Fe +2) = 0,77 в и E 0 (I 2 /2I -) = 0,54 в. Вычисляем DЕ 0:

DЕ 0 = Е 0 ок - Е 0 восст = 0,77 - 0,54 = 0,23 в >0.

Реакция возможна, так как DЕ 0 > 0.

Пример 2 . Определить возможность протекания реакции

2 KMnO 4 + 16 HCl ® 2 KCl + 2 MnCl 2 + 5 Cl 2 + 8 H 2 O.

Решение. Находим, что окислителем является перманганат-ион MnO 4 - , переходящий в Mn +2 , а восстановителем - хлорид-ион, переходящий в газообразный хлор Cl 2 . Определяем по таблице их потенциалы: E 0 (MnO 4 - /Mn +2) = 1,51 в и E 0 (Cl 2 /2Cl -) = 1,36 в. Вычисляем

DЕ 0 = Е 0 ок - Е 0 восст = 1,51 - 1,36 = 0,15 в >0.

Реакция возможна, так как DЕ 0 > 0.

В ходе урока мы изучим тему «Окислительно-восстановительные реакции». Вы узнаете определение данных реакций, их отличия от реакций других типов. Вспомните, что такое степень окисления, окислитель и восстановитель. Научитесь составлять схемы электронного баланса для окислительно-восстановительных реакций, познакомитесь с классификацией окислительно-восстановительных реакций.

Тема: Окислительно-восстановительные реакции

Урок: Окислительно-восстановительные реакции

Реакции, протекающие с изменением степеней окисления атомов, входящих в состав реагирующих веществ, называются окислительно-восстановительными . Изменение степеней окисления происходит из-за перехода электронов от восстановителя к окислителю. - это формальный заряд атома, если считать, что все связи в соединении являются ионными.

Окислитель - это вещество, молекулы или ионы которого принимает электроны. Если элемент является окислителем, его степень окисления понижается.

О 0 2 +4е - → 2О -2 (Окислитель, процесс восстановления)

Процесс приема веществами электронов называется восстановлением . Окислитель в ходе процесса восстанавливается.

Восстановитель - это вещество, молекулы или ионы которого отдают электроны. У восстановителя степень окисления повышается.

S 0 -4е - →S +4 (Восстановитель, процесс окисления)

Процесс отдачи электронов называется . Восстановитель в ходе процесса окисляется.

Пример №1. Получение хлора в лаборатории

В лаборатории хлор получают из перманганата калия и концентрированной соляной кислоты. В колбу Вюрца помещают кристаллы перманганата калия. Закрывают колбу пробкой с капельной воронкой. В воронку наливается соляная кислота. Соляная кислота приливается из капельной воронки. Сразу же начинается энергичное выделение хлора. Через газоотводную трубку хлор постепенно заполняет цилиндр, вытесняя из него воздух. Рис. 1.

Рис. 1

На примере этой реакции рассмотрим, как составлять электронный баланс.

KMnO 4 + HCI = KCI + MnCI 2 + CI 2 + H 2 O

K + Mn +7 O -2 4 + H + CI - = K + CI - + Mn +2 CI - 2 + CI 0 2 + H + 2 O -2

Степени окисления поменяли марганец и хлор.

Mn +7 +5е - = Mn +2 окислитель, процесс восстановление

2 CI - -2е - = CI 0 2 восстановитель, процесс окисление

4. Уравняем число отданных и принятых электронов. Для этого находим наименьшее общее кратное для чисел 5 и 2. Это 10. В результате деления наименьшего общего кратного на число отданных и принятых электронов, находим коэффициенты перед окислителем и восстановителем.

Mn +7 +5е - = Mn +2 2

2 CI - -2е - = CI 0 2 5

2KMnO 4 + ? HCI = ?KCI + 2MnCI 2 + 5CI 2 +? H 2 O

Однако перед формулой соляной кислоты не поставлен коэффициент, так как не все хлоридные ионы участвовали в окислительно-восстановительном процессе. Метод электронного баланса позволяет уравнивать только ионы, участвующие в окислительно-восстановительном процессе. Поэтому нужно уравнять количество ионов, не участвующих в . А именно катионов калия, водорода и хлоридных анионов. В результате получается следующее уравнение:

2KMnO 4 + 16 HCI = 2KCI + 2MnCI 2 + 5CI 2 + 8H 2 O

Пример №2. Взаимодействие меди с концентрированной азотной кислотой. Рис. 2.

В стакан с 10 мл кислоты поместили «медную» монету. Быстро началось выделение бурого газа (особенно эффектно выглядели бурые пузырьки в еще бесцветной жидкости). Все пространство над жидкостью стало бурым, из стакана валили бурые пары. Раствор окрасился в зеленый цвет. Реакция постоянно ускорялась. Примерно через полминуты раствор стал синим, а через две минуты реакция начала замедляться. Монета полностью не растворилась, но сильно потеряла в толщине (ее можно было изогнуть пальцами). Зеленая окраска раствора в начальной стадии реакции обусловлена продуктами восстановления азотной кислоты.

Рис. 2

1. Запишем схему этой реакции:

Cu + HNO 3 = Cu (NO 3) 2 + NO 2 + H 2 O

2. Расставим степени окисления всех элементов в веществах, участвующих в реакции:

Cu 0 + H + N +5 O -2 3 = Cu +2 (N +5 O -2 3) 2 + N +4 O -2 2 + H + 2 O -2

Степени окисления поменяли медь и азот.

3. Составляем схему, отражающую процесс перехода электронов:

N +5 +е - = N +4 окислитель, процесс восстановление

Cu 0 -2е - = Cu +2 восстановитель, процесс окисление

4. Уравняем число отданных и принятых электронов. Для этого находим наименьшее общее кратное для чисел 1 и 2. Это 2. В результате деления наименьшего общего кратного на число отданных и принятых электронов, находим коэффициенты перед окислителем и восстановителем.

N +5 +е - = N +4 2

Cu 0 -2е - = Cu +2 1

5. Переносим коэффициенты в исходную схему и преобразуем уравнение реакции.

Cu + ?HNO 3 = Cu (NO 3) 2 + 2NO 2 + 2H 2 O

Азотная кислота участвует не только в окислительно-восстановительной реакции, поэтому коэффициент сначала не пишется. В результате, окончательно получается следующее уравнение:

Cu + 4HNO 3 = Cu (NO 3) 2 + 2NO 2 + 2H 2 O

Классификация окислительно-восстановительных реакций

1. Межмолекулярные окислительно-восстановительные реакции.

Это реакции, в которых окислителем и восстановителем являются разные вещества.

Н 2 S -2 + Cl 0 2 → S 0 + 2HCl -

2. Внутримолекулярные реакции, в которых окисляющиеся и останавливающиеся атомы находятся в молекулах одного и того же вещества, например:

2H + 2 O -2 → 2H 0 2 + O 0 2

3. Диспропорционирование (самоокисление-самовосстановление) - реакции, в которых один и тот же элемент выступает и как окислитель, и как восстановитель, например:

Cl 0 2 + H 2 O → HCl + O + HCl -

4. Конпропорционирование (Репропорционирование) - реакции, в которых из двух различных степеней окисления одного и того же элемента получается одна степень окисления

Домашнее задание

1. №№1-3 (с. 162) Габриелян О.С. Химия. 11 класс. Базовый уровень. 2-е изд., стер. - М.: Дрофа, 2007. - 220 с.

2. Почему аммиак проявляет только восстановительные свойства, а азотная кислота - только окислительные?

3. Расставьте коэффициенты в уравнении реакции получения азотной кислоты, используя метод электронного баланса: ?NO 2 + ?H 2 O + O 2 = ?HNO 3

Окислителями могут быть нейтральные атомы и молекулы; положительно Заряженные ионы металлов; сложные ионы и молекулы, содержащие атомы металла в состоянии высокой степени окисления; сложные ионы и молекулы, содержащие атомы неметалла в состоянии положительной степени окисления; положительно заряженные ионы водорода (в некоторых кислотах, щелочах и воде).

Нейтральные атомы. Окислителями являются атомы элементов, имеющие на внешнем уровне 7, 6, 5 и 4 электрона. Это p-элементы ( - ). Из них типичными окислителями являются неметаллы (в виде простых веществ и др.), которые характеризуются большим сродством к электрону. Проявляя окислительные свойства, они могут принимать электроны (до 8):

Самые сильные окислители - атомы галогенов и кислород - принимают соответственно один и два электрона.

Самые слабые окислители - атомы четвертой главной подгруппы - принимают четыре электрона.

В главных подгруппах IV, V, VI и VII окислительные свойства падают с возрастанием величин радиусов атомов. Следоватедьно, из нейтральных атомов самый сильный окислитель - фтор, самый слабый - свинец.

Все перечисленные элементы (за исключением и ) могут при взаимодействии с сильными окислителями отдавать электроны, т. е. проявлять восстановительные свойства:

Поэтому их называют также окислителями - восстановителями. У неметаллов окислшельные свойства выражены сильнее, чем восстановительные.

Положительно заряженные ионы металлов. Все положительно заряженные ионы металлов в той или иной степени проявляют окислительные свойства.

Из них более сильными окислителями являются положительно заряженные ионы в высокой степени окисления. Так, например, для ионов характерны восстановительные свойства, а для ионов , - окислительные. Последние в зависимости от условий реакции могут восстанавливаться как до ионов в низшей степени окисления, так и до нейтральных атомов, например:

Однако и ионы в низшей степени окисления (или катионы), обладая большим запасом энергии, чем нейтральные атомы, могут проявлять окислительные свойства при взаимодействии с типичными восстановителями, например:

Ионы благородных металлов ( и ) даже в низкой степени окисления являются сильными окислителями

Следует еще раз отметить, что чем более активен металл как восстановитель, тем менее он активен в состоянии иона как окислитель. И наоборот, чем менее активен металл как восстановитель, тем более он активен в состоянии иона как окислитель. Так, например, при переходе нейтральных атомов калия и серебра в ионное состояние и потенциалы ионизации первого порядка соответственно равны 415,6 и 724,5 кдж. Поэтому ион серебра обладает значительно большим сродством к электрону, чем ион так как энергия, выделяющаяся при присоединении электрона к положительному иону, равна энергии ионизации с обратным знаком.

Сложные ионы и молекулы, содержащие атомы металла в состоянии высшей степени окисления.

Типичными окислителями являются вещества, содержащие атомы металла в состоянии наиболее высокой степени окисления (например, ), из которого они стремятся перейти в состояние с меньшей степенью окисления или в состояние с нулевой степенью окисления .

Например:

Сложные ионы и молекулы, содержащие атомы неметалла в состоянии положительной степени окисления. Сильные окислительные свойства проявляют также неметаллы в состоянии высокой, а некоторые и в низкой положительной степени окисления. К числу этих окислителей относятся кислородные кислоты, их ангидриды и соли (например, , концентрированная и др.). Из данного состояния эти неметаллы стремятся перейти в состояния с более низкой степенью окисления.

Азотная кислота в зависимости от ее концентрации и активности восстановителя может принимать от 1 до 8 электронов:

Сильными окислителями являются также концентрированные серная, селеновая и теллуровая кислоты. В ряду окислительные свойства возрастают от серной к теллуровой кислоте. При этом в зависимости от активности восстановителя и условий протекания реакции они могут восстанавливаться до .

Например:

Общая характеристика кислородных соединений галогенов в зависимости от степени окисления может быть выражена следующим образом:

В ряду - - окислительные свойства и устойчивость уменьшаются. Помимо окислительной способности для и характерны реакции диспропорционирования:

В ряду окислительные свойства двух первых кислот очень похожи и выражены сильно, тогда как окислительные (и кислотные) свойства йодноватой кислоты выражены значительно слабее.

Хлорная кислота единственная из кислородных кислот хлора известна в свободном виде. При нагревании выше 92° С она подвергается внутримолекулярной реакции окисления - восстановления (нередко со взрывом):

Окислительные свойства значительно слабее, чем , и в разбавленных растворах она окислительных свойств практически не проявляет.

Окислительные свойства выражены сильнее, чем .

Ортоиодная кислота также проявляет окислительные свойства:

Как и кислородные кислоты галогенов, окислительно-восстановительные свойства проявляют их соли, которые используются главным образом как окислители.

Кислородные соединения хлора, брома и иода, проявляя окислительные свойства, восстанавливаются в зависимости от условий реакции до свободного состояния или до отрицательно заряженного иона, например:

Окислительные свойства проявляют также положительно заряженные ионы водорода (в некоторых кислотах, щелочах и воде), что может быть использовано для получения в лабораторных условиях водорода. Его получают взаимодействием разбавленных растворов соляной, серной, ортофосфорной и уксусной кислот с цинком, железом, магнием, марганцем, алюминием и др., например:

Из оснований (, КОН, ) положительные ионы водорода восстанавливаются алюминием, кремнием, цинком, оловом и др., например:

Ионами водорода воды окисляются наиболее активные металлы (I и II главных подгрупп, кроме магния).

Таким образом, если атомы находятся в степенях окисления (например, азот, мышьяк, сера, селен и теллур в соединениях , ), то они, являясь в отрицательной степени окисления ( и ), могут быть только восстановителями, так как на их внешнем уровне находится по 8 электронов и они не могут более принимать электроны.